
Optimal Code Compiling in C
Nitika Gupta

M.Tech (I.T) Student
Banasthali Vidyapith

 Rajasthan, India

Nistha Seth
M.Tech (C.S) Student
Banasthali Vidyapith

Rajasthan, India

Prabhat Verma
Assistant Professor
 CSE Department
HBTI, U.P, India

Abstract- In the present era, developing high level application
programs has been a major concern for the programmers.
During the design phase of software application, the
functionality of developed programs has always been the area
of consideration. Different compilers may have in built
mechanism to speed up the programs, but these compilation
process may adversely affect the length of the code and hence
slower the execution of highly developed applications. Thus, to
enhance the performance of the large complex applications,
several code optimization techniques are being provided by
the compilers in C. These code expansion techniques are
predominated over manual coding techniques as they help in
speeding up the process of program execution in such a way
that both time and reserved memory space can be effectively
utilized. In this paper we discuss about our implemented work
on Code Optimization using two techniques: “Dead Code
Elimination” and “Inlining”. Our implemented work is
automatic procedure which eliminates the chances of errors
that are quite possible in manual procedures. We have verified
the code optimization performance using code complexity
measurement tools. Results obtained are quite satisfactory as
compare to existing methods.

Index terms- Code Optimization techniques, complexity,
compilers, CCCC tool, functions, software.

I. INTRODUCTION
In compiler design, Optimization is the process of
transforming a piece of code (un-optimized code) to make
more efficient without changing its output or side effects. A
program may be optimized so that it becomes of a smaller
size, consumes less memory, executes more rapidly, or
performs fewer input/output operations. Optimization can
be performed by automatic optimizers or programmers. An
optimizer is either a specialized software tool or a built-in
unit of a compiler. Optimization is classified into high-level
and low-level optimization. High-level optimization are
generally performed by the programmer who handles
abstract entities (functions, procedures, classes, etc.) and
performed at the level of elementary structural blocks of
source code- loops, branches, etc. Low-level optimizations
are performed at the stage when source code is compiled
into a set of machine instructions, and it is at this stage that
automated optimization is usually employed. Optimization

includes finding a bottleneck, a critical part of the code
which is the primary consumer of the needed resources [1].
The code optimization mainly concerns on correctness that
means optimization does not change the correctness of
generated code. The criterion of code optimization must
preserve the semantic equivalence of the program and the
algorithm should not be modified. Transformation, on
average should speed up the execution of program. In
compiler optimization theory, the compiler optimization
basically refers to the program optimization to achieve
performance in the execution. Program optimization refers
to the three aspects:-

i. Frontend: a programming language code.
ii. Intermediate code: an assembly language code

generated by the compiler appropriate to the
programming language.

iii. Backend: the specific machine or object code
generated from the assembly language code for the
actual execution by the compiler.

II. EXISTING APPROACHES OF OPTIMIZATION

A. Need for Optimization?
 Since process of optimization takes extra time than the
actual time involved in coding, our area of focus should be
more on that 10% executed time- critical program rather
than considering of implementation of whole program
These fragments of code created a congestion in the process
of implementation and hence can be detected by special
utilities profilers which can measure the execution time of
various parts of the program. Such optimization methods
are done only during the stage of “complex programming”
and therefore is a mixture of several optimization
approaches such as, refactoring and debugging:
simplification of "queer" constructs like strlen(path.c_str()),
logical conditions like (a.x != 0 && a.x != 0), and so on.
Profilers are of little help with this kind of optimization and
hence such issues can be resolved by the usage of statistics
analytics tools. Such inefficient code may result due to
programming errors and hence code fragmentation is done
to detect every part of program. These tools analyze each
fragment of the code and hence generate the warning
messages.

Figure 1.Code Optimization

 IR IR
FRONTEND OPTIMIZER BACKEND

Machine
code

Source
code

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2050

B. Which code to optimize?
 Code optimization done manually creates problem: one
doesn't only need to know how exactly optimization should
be done, but also what particular part of the program should
be optimized. Due to various reasons (slow input
operations, the difference in the working speed of a human
operator and a computer, and so on), 90% of the execution
time of a program is spent executing only 10% of the code.
Since optimization takes more time developing the
program, one should better focus on optimizing these time-
critical 10% of code rather than try to optimize the whole
program[11]. These code fragments are known as
bottlenecks and can be detected by special utilities -
profilers - which can measure the time taken by various
parts of the program to execute.
The process of optimization can reduce readability and
include more of coding thus enhancing the strength of
program. However, in case of complex programs such
process of optimization is difficult to achieve leading to
slower debugging. Thus optimization is done at the end of
process of development of application. Initial optimization
of code lead to increase in the level of programming
making it more complicated which interrupt the
programmer. The process of code expansion should be

done keeping in mind the time involved and influence of
code on the system performance [9]. The better approach is
to perform designing before coding leading to code
fragmentation and hence avoid the unexpected
programming problems. Such form of developed code after
design phase is being clear and precise, thus
outperforming the cost involved in maintaining it.
C. Merits of Optimization
 Code optimization is a set of methods of code

modification to improve code quality and efficiency.
 A program may be optimized so that it becomes of a

smaller size.
 A program may be optimized so that it consumes less

memory.
 An optimized code executes more rapidly.
 Optimization should increase the speed of the program

and if possible, the program should demand less
number of resources.

 Performs fewer input/output operations.
 Optimization gives high quality code with best

complexity (time and space) without affecting the
exact result of the code.

.

Table I. PREVALENT TECHNIQUES OF OPTIMIZATION

Techniques Definition Examples
Before After

DEAD CODE
ELIMINATION

 Repeated instructions considered ‘Dead’
 Can be removed[14]
 tmp1 = tmp2 + tmp3;
 tmp1 dead

int f(int x) {
return x+1;
...
}

int f (int x)
{
return x+1;
}

INLINING

 contents of a function are “inlined”, basically, copied and pasted
instead of a traditional call to that function[5]

 avoids the overhead of function calls.

int add (int x, int y)
{ return x+y;
}
 int sub(int x,int y)
{
 return add(x , -y);
{

int sub (int x, int y)
{
 return x-y;
}

CODE
MOTION

 identifying bits of code that occur within loops, but need only be
executed once during that particular loop.[5]

 expensive re-evaluation will be potentially avoided

void f(int a, int b)
{ int i;
 for (i=1; i<10; i++)
 { ar[i]=a+b;
 }
}

void f (int a, int b)
{ int i;
 int tmp =a+b;
 for (i=1; i<10; i++)
 { ar[i]=tmp; }
}

COMMON
SUB-
EXPRESSION

 common function: two operations produce same results[2]
 Recomputing the expression can be eliminated

i = x + y + 1;
j = x + y;

t1 = x + y
i = t1 + 1;
j = t1;

STRENGTH
REDUCTION

 Computationally expensive operations by simpler ones.
 Application: simplify multiplication by index variables to

additions within loops[13]

t := b * c
FOR i := 1 to 10000 DO
BEGIN

 a := t

 ...
 END

t := b * c
d := 0
FOR i := 1 TO 10000 DO
BEGIN
d := i * 3
a := t
d := d + 3
…
END

LOOP
UNROLLING

 Loop unwinding
 Interpreting the iterations into a sequence of instructions which

will reduce the loop overhead.

int i = 0;
while (i < num) {
a_certain_function(i);
i++;
}

int i = 0;
while (i < num) {
a_certain_function(i);
a_certain_function(i+1);
a_certain_function(i+2);
a_certain_function(i+3);
i += 4;
}

CONSTANT
FOLDING

 Evaluate constant expressions at compile time.
 Only possible when side-effect freeness guaranteed.

C:=1+3
True not

C:=4
False

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2051

D. COMMON OPTIMIZATION TECHNIQUES
 Optimization techniques are used to improve the
speed of computer program. It focuses on minimizing time
spent by the CPU and gives sample source code
transformations that often yield improvements. Table
1gives a brief overview of these optimization techniques

E. CCCC TOOL
 CCCC is a tool for the analysis of source code in
various languages (primarily C++), which generates a
report in HTML format on various measurements of the
code processed. Although the tool was originally
implemented to process C++ and ANSI C, the present
version is also able to process Java source files, and support
has been presented in earlier versions for Ada95. The name
CCCC stands for 'C and C++ CodeCounter'. Measurements
of source code of this kind are generally referred to as
'software metrics', or more precisely 'software product
metrics'. CCCC has been developed as freeware, and is
released in source code form. Users are encouraged to
compile the program themselves, and to modify the source
to reflect their preferences and interests. The simplest way
of using CCCC is just to run it with the names of a selection
of files on the command line like this:
 cccc my_types.h big.h small.h *.cc
 For each file, named, CCCC will examine the extension of
the filename, and if the extension is recognized as
indicating a supported language, the appropriate parser will
run on the file. As each file is parsed, recognition of certain
constructs will cause records to be written into an internal
database. When all files have been processed, a report on
the contents of the internal database will be generated in
HTML format. By default the main summary HTML report
is generated to the file cccc.htm in a subdirectory called
.cccc of the current working directory, with detailed reports
on each module (i.e. C++ or Java class) identified by the
analysis run. In addition to the summary and detailed
HTML reports, the run will cause generation of
corresponding summary and detailed reports in XML
format, and a further file called cccc.db to be created. [7]
The report contains a number of tables identifying the
modules in the files submitted and covering:

1. Measures of the procedural volume and complexity of

each module and its functions;
2. Measures of the number and type of the relationships

each module is a party to either as a client or a supplier;
3. Identification of any parts of the source code submitted

which the program failed to parse; and
4. A summary report over the whole body of code

processed of the measures identified above.

1. Features of CCCC
 The main features of CCCC 3.0 which are working as
of today include:
 Internal database recoded using STL(much faster. No

hard_ coded limits on run size).
 Persistent file format allows analysis outcomes to be

saved across runs, which is reloaded and read by other
tools.

 All output files are now generated into a single
directory.

 2. Counting Methods
 CCCC calculate each of the measures by implementing
simple algorithm. These algorithms are intended to give a
useful approximation to the underlying quantities.
a. Number of Modules (NOM):

CCCC defines modules in terms of grouping of
member functions : C++ classes and namespace, java
classes and interfaces and Ada packages are all defined
as modules.

b. Line of Code (LOC):
It includes industry standard of counting non-blank,
non-comment lines of source code. Class and Function
declaration are counted, but declarations of global data
are ignored.

c. Comment Lines (COM):
 Any line which contains any part of a comment for
the language concerned is treated as a comment by
CCCC. The leading comments are treated as part of the
function or class definition which follows them.

d. Cabe’s cyclomatic complexity (MVG):
It is the count of linearly independent paths through a
flow of control derived from a subprogram. In case of
C++, the count is incremented for each of the
following tokens: ‘if’, ‘while’, ‘for’, ‘switch’, ‘break’,
‘&&’, ‘||’.

e. Weighted methods per class (WMC):
 This is a count of the member functions known to exist
in a class. Knowledge of existence of a function is only
gained from declarations or definitions directly
contained in files processed by CCCC.

When applying these existing approaches we have to face
some problems. Sometimes, it changes the meaning of the
code and final output. So that we built an interface in which
we embed optimization techniques in order to optimize the
code. This is an automatic process in which time, space and
cost is reduced in comparison to manual code optimization,
will give quiet satisfactory result and easy to optimize with
complexity measures.

III. PROPOSED TECHNIQUE
This section presents the details of our proposed technique
for optimizing the code using automatic tool. Optimization
scheme chooses the portion of the code to
compile/recompile and then compile the code with set of
optimizations. This work is similar in the respect that a
separate optimization phase is done concurrently with
program execution. However, our work is more aggressive
and adaptive in that our optimization phase includes the full
spectrum of optimization techniques. Recently, research
effort have been exploring the use of search techniques to
identify the interaction as well as the value of determining
the best order to apply optimizations at different portions of
the code [12]. Two optimization techniques “Dead Code
Elimination” and “Inlining” are implemented using .NET
framework that is connected internally with CCCC tool. We
built an interface in which we embed optimization

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2052

techniques in order to optimize the code. It imports a code
from your computer and then some operations are
performed according to the techniques implemented and
then it calls the CCCC tool automatically to find the
complexity of an optimized code.
Our design works on two modes-

i. First mode: - Program is typed already in the program
file and we will let the user open the existing file.

ii. Second mode: - User will type the program in the space
provided.

A. DEAD CODE ELIMINATION
 Dead Code is code that is either never executed or, if it
is executed, its result is never used by the program.
Unreachable code can be eliminated. Code that follows a
return, break, continue, goto and has no label, can be
eliminated.[2]

Figure 2. Example Dead code elimination

Code that appears in functions that are never called can be
eliminated. This process is sometimes describes as “tree-
shaking”. In another example, the value assigned to i is
never used, and the dead store can be eliminated. The first
assignment to app is dead, and the third assignment to
global is unreachable; both can be eliminated.

Using .NET framework that is interconnected with the
CCCC tool, we produce an optimized code. Firstly , an
existing program is analysed on the platform we provided.
In the menu bar three options are there- Code Analysis,
Program Check and Help. In First phase, Code analysis
provides two options local code file and Type code. Dead
code elimination can be done on both types of code either it
is previously existed file or it is manually typed. When code
analysis is done, it gives the dead code warning(as shown in

figure 3). After removing the dead code, in the bin folder
an optimized code file will be automatically generated with
the name dump.cpp. In Second phase, Program check is
used to analyse the performance of optimized code by using
the CCCC Tool which was already linked with code
analysis link(as shown in figure 4) and after that it will give
the resultant table of complexity measures(shown in figure
5).

Figure 3. Code Analysis

Figure 4. Complexity Check

Figure 5. complexity measures after optimization

1. Comparision of complexity in between unoptimized

code and optimized code using Dead Code
Elimination: In our project there is a menu
option Program check, which is used for Report
Generation. The comparison is made using the
following example of c code.

int app ;
void f()
{ int i;
 i=1;
/*dead store*/
 app=1;
/*dead store*/
 app=2;
 return ;
 app=3;
/*unreachable*/
}

int app;
void f()
{ app=2;
 return;
 }

 int f(int x){ int f(int x){

 return x+1; ...} return x+1; }

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2053

Figure 6. Complexity Measurement Report Before

Optimization

Figure 7. Complexity Measurement Report After

Optimization

B. INLINING
 Inlining refers to compile-time optimization where a
small function of code will be injected into the calling
function rather than require a separate call. It solves the
performance and maintainability issue by letting you
declare the function as inline (at least in C++), [3]so that
when you call that function - instead of having your app
jumping around at runtime - the code in the inline function
is injected at compile time every time that given function is
called. There is an example of inlining i.e.
 void swap(int & m, int & n)
{ int temp = m;
 m = n;
 n = temp;
}

Before optimization
#include<stdio.h>
#include<conio.h>
/* function prototype */
float average(float , float,float);
void main()
{ float a,b,c,avg;
 clrscr();
 printf("\nEnter the value of a,b,c :");
 scanf("%f %f %f",&a,&b,&c);
 avg=average(a,b,c);
 /*function call */
 printf("\nAverage = %f",avg);
 getch();
}
/* function defintion */
float average(float i,float j,float k)
{ float avg;
 avg=(i+j+k)/3;
 return avg;
}
int sum(int a,int b)
{ int c;
 c=a+b;
 return c;
}
int power(int x,int y)
{ int i,result;
 result=1;
 for(i=1;i<=y;i++)
 result=result*x;
 return result;
}
int factorial(int num)
{ int fact=1,i;
 for(i=1;i<=num;i++)
 fact=fact*i;
 return fact;
}
int square(int num)
{ int result;
 result=num*num;
 return result;
}

after optimization
 #include<stdio.h>
#include<conio.h>

/* function prototype */

float average(float , float,float);

void main()
{
 float a,b,c,avg;
 clrscr();
 printf("\nEnter the value of a,b,c :");
 scanf("%f %f %f",&a,&b,&c);
 avg=average(a,b,c);
 /*function call */
 printf("\nAverage = %f",avg);
 getch();
}
/* function defintion */
float average(float i,float j,float k)
{
 float avg;
 avg=(i+j+k)/3;
 return avg;
}

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2054

After Inlining -
int temp = x;
x = y;
y = temp;

When implementing a sorting algorithm doing lots of
swaps, this speeds things up a lot. By using .NET
framework, firstly we have to check that the SQL server
express is installed then we have to follow some steps one
by one, In Inlining process we have some phases for
producing final result from unoptimized code to optimized
code. First phase is ‘Input of unoptimized code’(shown in
fig 8), second phase is ‘code analysis and Macro
substitution’ in this phase code is analysed and code will
process to database(database in fig 9) and match the code
with the function prototype, and substitute the macros
according to the function prototype with the help of stored
data and replace it with the function code(shown in fig 10).
And last phase of this process is ‘resultant code’. In this if
we want to replace it the click ‘yes’, and then click on
‘perform inlining’ after that resultant code will display on
the screen and give the optimized code (see fig11) .If we
want to measure its complexity we can use cccc tool also.
These snapshots will describe its function automatically.

Figure 8. Input of Unoptimized Code

Figure 9. Database of Functions

 Figure 10. Substitution & Replacement of Macros

Figure 11. Final Result

1. Comparision of complexity in between unoptimized
code and optimized code using Inlining- In our project there
is a menu option Program check, which is used for Report
Generation. The comparison is made using the following example
of c code.

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2055

Figure 12. Complexity Measurement Report Before

Optimization

Figure 13. Complexity Measurement Report After

Optimization

Before Optimization
#include<stdio.h>
#include<conio.h>
/* function prototype */
float average(float , float,float);
void main()
{ float a,b,c,avg;
 clrscr();
 printf(“\nEnter the value of a,b,c :”);
 scanf(“%f %f %f”,&a,&b,&c);
 avg=average(a,b,c); /*function call */
 printf(“\nAverage = %f”,avg);
 getch();
}
/* function definition */
float average(float i,float j,float k)
{ float avg;
 avg=(i+j+k)/3;
 return avg;
}
int sum(int a,int b)
{ int c;
 c=a+b;
 return c;
}
int power(int x,int y)
{ int i,result;
 result=1;
 for(i=1;i<=y;i++)
 result=result*x;
 return result;
}
int factorial(int num)
{ int fact=1,i;
 for(i=1;i<=num;i++)
 fact=fact*i;
 return fact;
}
int square(int num)
{ int result;
 result=num*num;
 return result;
}
int operate(int a, int b)
{ return (a+b);
}

After optimization

#include<stdio.h>
#include<conio.h>

#define SQUARE(NUM) NUM*NUM
#define SUM(a,b) (a+b)
/* function prototype */
float average(float , float, float);
void main()
{ float a, b ,c, avg;
 clrscr();
 printf(“\nEnter the value of a,b,c :”);
 scanf(“%f %f %f”,&a,&b,&c);
 avg=average(a,b,c)
 /*function call */
 printf(“\nAverage = %f”,avg);
 getch();
}
/* function definition */
float average(float I,float j,float k)
{ float avg;
 avg=(i+j+k)/3;
 return avg;
}
int sum(int a,int b)
{ int c;
 c=a+b;
 return c;
}
int power(int x,int y)
{ int I,result;
 result=1;
 for(i=1;i<=y;i++)
 result=result*x;
 return result;
}
int factorial(int num)
{ int fact=1,I;
 for(i=1;i<=num;i++)
 fact=fact*I;
 return fact;
}

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2056

Table II. PERFORMANCE MEASUREMENT FOR
DEAD CODE ELIMINATION

Lines of Code (LOC) 44 17

McCabe’s Cyclomatic
Number

7 1

 Lines of Comment 3 3

LOC/COM 14.667 ----

MVG/COM 2.333 ----

Table III. PERFORMANCE MEASUREMENT FOR

INLINING

Lines of Code (LOC) 47 38

McCabe’s Cyclomatic
Number

8 6

Lines of Comment 3 3

LOC/COM 15.667 12.667

MVG/COM 2.667 2.000

IV. RESULTS AND DISCUSSION

In this paper, we have proposed our approaches for code
optimization using techniques like Dead Code Elimination
and Inlining for programming code written in C / C++
language. In Dead Code Elimination we are using cccc tool
which was already linked with function and it will give
result of complexities when the dead code found and give
the optimized code with complexity measures. While using
Inlining technique, we have used SQL server for making a
database of code function, and when we click on “optimize
the code” after writing an un-optimized code, it will go to
database and match the code function, if it matched, the
database gives the macro function as per the code function
requirement and optimize the code with minimum line of
codes. We have verified the code optimization performance
using code complexity measurement tools. The results
confirm a significant enhancement in quality of optimized
code as computed using performance measuring tools.

V. CONCLUSION AND FUTURE WORK
There are different types of code optimization techniques
that can be used to make code effective without affecting its
final output. The CCCC tool provides the way to find the
complexity of optimized and un-optimized codes and
comparison in between them. This paper describes our
methods for optimization using techniques like Dead Code
Elimination and Inlining for programming code written in C
/ C++ language. Our future work shall incorporate other
methods for code optimization in our automated tool for
this purpose.

REFERENCES
[1] Michael E. Lee, “Optimization of Computer Programs in C”, Ontek

Corporation, USA “Code Optimization” article. Available:
http://leto.net/docs/C-optimization.php Forman, G. 2003.

[2] Maggie Johnson, “Code Optimization”, Handout 20, August 04,
2008.

[3] Mohammed Fadle Abdulla, “Manual and Fast C Code Optimization”,
Anale. Seria Informatica. Vol. VIII fasc. I-2010.

[4] Mr. Chirag H. Bhatt, Dr. Harshad B. Bhadka, “Peephole
Optimization Technique for analysis and review of Compile Design
and Construction”, IOSR Journal of Computer Engineering (IOSR-
JCE), Volume 9, Issue (4 Mar. - Apr. 2013).

[5] “Optimization Techniques in C”, Fall, 2013. Available:
http://cs.brown.edu/courses/cs033/docs/guides/c_optimization_notes.
pdf.

[6] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, “Source–Level
Execution Time Estimation of C Programs”, Proceedings of the ninth
international symposium on Hardware/software code design.

[7] “CCCC User Guide” available at
http://www.stderr.org/doc/cccc/CCCC%20User%20Guide.html

[8] Tips for “Optimizing C/C++ Code”. Available:
http://people.cs.clemson.edu/~dhouse/courses/405/papers/optimize.p
df

[9] “Writing Efficient C and C Code Optimization”. Article:
http://www.codeproject.com/Articles/6154/Writing-Efficient-C-and-
C-Code-Optimization

[10] “Optimizing C++/ Code Optimization/ Faster operations”Available:
http://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Code_optimiza
tion/Faster_operations.

[11] “Continuous Compilation: A New Approach to Aggressive and
Adaptive Code Transformation”.
Available:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=12
13375&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_a
ll.jsp%3Farnumber%3D1213375\

[12] S.K.Srivastava, Deepali Srivastava, “C in Depth” 3rd edition.
[13] Programming language translation

http://web.cs.wpi.edu/~cs544/PLT10.2.3.html
[14] www.sm.luth.se_csee_courses_smd_163_lecture11.pdf Viktor Leijon

& Peter Jonsson with slides by Johan Nordlander Contains material
generously provided by Mark P. Jones

Nitika Gupta/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2050-2057

www.ijcsit.com 2057

